

Available online at www.sciencedirect.com

Journal of the European Ceramic Society 26 (2006) 2101-2104

www.elsevier.com/locate/jeurceramsoc

Low-temperature sintering and microwave dielectric properties of CaWO₄ ceramics for LTCC applications

Eung Soo Kim^{a,*}, Soon Ho Kim^a, Burtrand I. Lee^b

^a Department of Materials Engineering, Kyonggi University, 94-6 Yiei-dong, Youngtong-gu, Suwon, Kyonggi-do 443-760, Korea ^b School of Materials Science and Engineering, Clemson University, Clemson, SC 29634, USA

Available online 2 November 2005

Abstract

Microwave dielectric properties of CaWO₄ ceramics were investigated as a function of H₃BO₃ and/or Bi₂O₃ content and sintering temperature. For a single addition of H₃BO₃ ($1 \le x$ (wt.%) ≤ 5), the density of specimen increased up to 3 wt.% H₃BO₃, and then decreased. The dielectric constant (*K*) and the quality factor ($Q \times f$) of the specimens sintered at 850 °C showed lower value than those of specimens sintered above 900 °C due to the poor sinterability. With the increase of H₃BO₃ content of 0.5 wt.% Bi₂O₃–*y*H₃BO₃ ($5 \le y$ (wt.%) ≤ 20), the sintering temperature of CaWO₄ ceramics could be effectively reduced from 1100 to 850 °C without degradation of dielectric properties. For the specimens sintered at 850 °C for 30 min, *K* was not changed remarkably with Bi₂O₃–H₃BO₃ content; however, $Q \times f$ value increased up to 9 wt.% H₃BO₃ of 0.5 wt.% Bi₂O₃–*y*H₃BO₃, and then decreased. The temperature coefficient of resonant frequency (*TCF*) shifted to the positive value with increasing Bi₂O₃–H₃BO₃ content. Typically, *K* of 8.7, $Q \times f$ of 70,220 GHz and *TCF* of -15 ppm/°C were obtained for the specimens with 0.5 wt.% Bi₂O₃–9 wt.% H₃BO₃ sintered at 850 °C for 30 min.

© 2005 Elsevier Ltd. All rights reserved.

Keywords: Powders-solid state reaction; X-ray methods; Dielectric properties; CaWO4; Functional applications

1. Introduction

The rapidly growing wireless industry needs a new highperformance material to build low loss and thermally stable integrated packages such as filters, duplexers, voltage-controlled oscillators and antennas.^{1,2} The operating high frequencies of these systems require substrate materials with low dielectric constant (K), high quality factor $(O \times f)$ and stable temperature coefficient of the resonant frequency ($TCF \le 10 \text{ ppm/}^{\circ}\text{C}$) which are important to those applications.³ Low K is also important because the signal propagation velocity is a function of permittivity.⁴ The materials of low K (<10) have been reported such as glass composition of SiO₂-B₂O₃-Al₂O₃,⁵ and there was no report for the crystalline ceramics. In our preliminary experiment, CaWO₄ ceramics sintered at 1100 °C for 3 h showed a good microwave dielectric properties; K = 10, $Q \times f = 75,000$ GHz and TCF = -25 ppm/°C. In order to develop CaWO₄ ceramics as a kind of new LTCCs, it is essential to reduce the sintering temperature of ceramics available to the cofiring

0955-2219/\$ - see front matter © 2005 Elsevier Ltd. All rights reserved. doi:10.1016/j.jeurceramsoc.2005.09.064 with internal conductor, Ag and/or Cu below the melting point of metal. $^{\rm 6}$

Therefore, this study was focused on the affecting factors on the sinterability and on the microwave dielectric properties of CaWO₄ ceramics with H_3BO_3 and/or Bi_2O_3 . Also, the physical properties of the ceramics were investigated as a function of the sintering temperature and H_3BO_3 and/or Bi_2O_3 content.

2. Experimental procedure

CaCO₃ (99.9%) and WO₃ (99.9%) were used as starting materials. The powders were weighed according to the formula of CaWO₄, and milled with ZrO₂ balls for 24 h in distilled water. The mixtures were dried and calcined at 700 °C for 3 h. The calcined powders were re-milled for 24 h with the addition of Bi_2O_3 -H₃BO₃, and pressed into pellets isostatically under the pressure of 142 MPa. These pellets were sintered from 850 to 950 °C for 10 min for 3 h.

Powder X-ray diffraction analysis (D/Max-3C, Rigaku, Japan) was used to determine the crystalline phases in the calcined and the sintered specimens. Polished surface of the sintered specimens was observed using scanning electron microscope (JEOL, JSM 820, Japan). The dielectric constant, and

^{*} Corresponding author. Tel.: +82 31 249 9764; fax: +82 31 249 9775. *E-mail address:* eskim@kyonggi.ac.kr (E.S. Kim).

unloaded *Q*-value of the specimens were measured by the postresonant method⁷ at 7–9 GHz. The temperature coefficient of resonant frequency (*TCF*) was measured by the cavity method⁸ in the temperature range from 25 to 80 °C.

3. Results and discussion

Powder X-ray diffraction patterns of CaWO₄ with xH_3BO_3 ($1 \le x$ (wt.%) ≤ 5) specimens sintered at 900 °C for 3 h are shown in Fig. 1a, and those with 0.5 wt.% Bi₂O₃- yH_3BO_3 ($5 \le y$ (wt.%) ≤ 20) specimens sintered at 850 °C for 10 min are shown in Fig. 1b. CaWO₄ with scheelite structure was obtained through the entire composition range and no remarkable changes in XRD patterns with Bi₂O₃- H_3BO_3 content. It could be predicted that $Bi_2O_3-H_3BO_3$ did not chemically reacted with CaWO₄ and only existed as liquid phase at sintering temperature.

Fig. 2a shows the apparent densities of CaWO₄ ceramics with H_3BO_3 as a function of sintering temperature. The density of the pure CaWO₄ ceramics was remarkably decreased with the sintering temperature from 1100 to 850 °C. On the other hand, the density of the specimens with H_3BO_3 was increased with H_3BO_3 content up to 3 wt.%, and then decreased for the further addition of H_3BO_3 . In view point of LTCC applications, it is desirable that sintering temperature should be low and sintering time should be short to be compatible with electrode materials such as Ag or Cu. To reduce the sintering temperature and time, the effects of Bi_2O_3 and H_3BO_3 co-addition were investigated for the specimens sintered at 850 °C. For the specimens

Fig. 1. X-ray diffraction patterns of CaWO₄ with H₃BO₃ and Bi₂O₃-H₃BO₃ content sintered at (a) 900 °C for 3 h and (b) 850 °C for 10 min.

Fig. 2. Apparent density of CaWO₄ specimens with (a) x wt.% H₃BO₃ sintered at various temperatures for 3 h and (b) 0.5 wt.% Bi₂O₃-y wt.% H₃BO₃ sintered at 850 °C for 10 and 30 min.

with 0.5 wt.% Bi₂O₃-yH₃BO₃ (5 \leq y (wt.%) \leq 20), the density was increased up to y=9.0, then decreased probably due to the increase of excess liquid phase, Bi₂O₃-H₃BO₃ in CaWO₄ specimens, as shown in Fig. 2b. Therefore, the sintering temperature and time to densify CaWO₄ could be effectively controlled by the co-addition of Bi₂O₃ and H₃BO₃.

Fig. 3 shows the microwave dielectric properties of CaWO₄ ceramics sintered from 850 to 950 °C for 3 h as a function of H₃BO₃ content. For the specimens sintered at 850 °C, *K* and $Q \times f$ value showed lower value than those of specimens sintered above 900 °C. These results are due to the poor sinterability as confirmed in Fig. 2. For the specimens sintered above 900 °C, *K* was remarkably improved with the addition of H₃BO₃. It has been reported⁹ that $Q \times f$ value is affected by the secondary phase, density, impurities and grain size. For the specimens with 3 wt.% H₃BO₃ sintered above 900 °C, the effect of density on $Q \times f$ value could be neglected because the relative density was higher than 96%. Also, the grain size of the specimens was not significantly changed with H₃BO₃ content.

Generally, the effectiveness of sintering aids depends on the several factors, such as sintering temperature, viscosity, solubility and glass wettability.¹⁰ Viscosity, solubility and glass wettability of H₃BO₃ in this work might be probably changed with sintering temperature and H₃BO₃ content. $Q \times f$ value of the specimens sintered at 950 °C showed lower value than that of the specimens sintered at 900 °C, which might be due to the excess of liquid phase. Temperature coefficient of resonant frequency (*TCF*) of the specimens sintered at 900 °C was slightly shifted to the positive value with H₃BO₃ content.

SEM photographs of CaWO₄ with 0.5 wt.% Bi₂O₃-y wt.% H₃BO₃ ceramics sintered at 850 °C for 10 min are shown in Fig. 4. With the increase of H₃BO₃ content, the grain size was increased up to y = 9.0 and liquid phase could be confirmed at the

Fig. 3. Microwave dielectric properties of CaWO₄ with x wt.% H₃BO₃ specimens sintered from 850 to 950 °C for 3 h.

grain boundary of y = 15.0 specimen. Consequently, the apparent density of the specimens above y = 9.0 was decreased due to an increasing amount of the liquid phase.

Fig. 5 shows the microwave dielectric properties of CaWO₄ with 0.5 wt.% Bi₂O₃-y wt.% H₃BO₃ ceramics sintered at 850 °C for 10 and 30 min, respectively. *K* and $Q \times f$ of the specimens

Fig. 4. SEM photographs of CaWO₄ with 0.5 wt.% Bi₂O₃-y wt.% H₃BO₃ specimens sintered at 850 °C for 10 min; (a) y = 5.0, (b) y = 7.0, (c) y = 9.0, (d) y = 15.0 (bar = 1 μ m).

Fig. 5. Microwave dielectric properties of CaWO₄ with 0.5 wt.% Bi_2O_3-y wt.% H_3BO_3 specimens sintered at 850 °C for 10 and 30 min.

depended on the content of H₃BO₃ as well as sintering time. For the specimens with H₃BO₃ content lower than 9.0 wt.%, *K* increased with the sintering time, whereas $Q \times f$ value decreased slightly with the increase of sintering time and H₃BO₃ content. Above 9.0 wt.% H₃BO₃, *K* decreased slightly, but $Q \times f$ value decreased remarkably with H₃BO₃. These results indicated that the Bi₂O₃-H₃BO₃ additive worked as a sintering agent, but detrimental to $Q \times f$ value because of the excess amount of liquid phase. *TCF* was shifted to the positive value with increasing Bi₂O₃-H₃BO₃ content.

4. Conclusion

Effects of H_3BO_3 and/or Bi_2O_3 content and sintering temperature on the microwave dielectric properties of CaWO₄ ceramics were investigated. CaWO₄ with scheelite structure was obtained through the entire composition range and no remarkable changes in XRD patterns with H₃BO₃ and/or Bi₂O₃ content. For the specimens with xH_3BO_3 ($1 \le x \pmod{9} \le 5$), *K* of the specimens sintered above 900 °C was remarkably improved with the addition of H₃BO₃. However, $Q \times f$ value of the specimens sintered at 950 °C showed lower value than that of the specimens sintered at 900 °C. For the specimens with 0.5 wt.% Bi₂O₃- yH_3BO_3 ($5 \le y \pmod{9} \le 20$), the sintering temperature of CaWO₄ could be reduced from 1100 to 850 °C, and *K* and $Q \times f$ of the specimens depended on the content of H₃BO₃ as well as sintering time. Above 9.0 wt.% H₃BO₃ in the additive of 0.5 wt.% Bi₂O₃- yH_3BO_3 ($5 \le y \pmod{9}$. Wt.%) ≤ 20), the additive was found to work as an excellent sintering agent.

Acknowledgement

This work was supported by the Grant of Overseas Research Program of Kyonggi University in 2003.

References

- 1. Chon, S. B., Microwave bandpass filters containing high *Q* dielectric resonator. *IEEE Trans. Microwave Theory Tech.*, 1968, **MTT-16**, 218.
- Wilcox, D. L., Huang, R. F. and Dai, S. X., Enabling materials for wireless multilayer ceramic integrated circuit (MCIC) applications. *Am. Ceram. Soc. Ceram. Trans.*, 1999, **97**, 201.
- Jantunen, H., Rautioaho, R., Uusimäki, A. and Leppävuori, S., Compositions of MgTiO₃-CaTiO₃ ceramic with two borosilicate glasses for LTCC technology. *J. Eur. Ceram. Soc.*, 2000, 20, 2331–2336.
- Jones, W. K., Liu, Y., Larsen, B., Wang, P. and Zampino, M., Chemical, structural and mechanical properties of the LTCC tapes. In *Proceedings of the 2000 International Symposium on Microelectronics*. IMAPS, Boston, MA, USA, 2000, pp. 669–704.
- Tummala, R. R., Ceramic and glass-ceramic packaging in the 1990s. J. Am. Ceram. Soc., 1991, 74, 895–908.
- Maclaren and Ponton, C. B., Low temperature hydrothermal synthesis of Ba(Mg_{1/3}Ta_{2/3})O₃ sol-derived powders. J. Mater. Sci., 1998, 33, 17–22.
- Hakki, B. W. and Coleman, P. D., A dielectric method of measuring inductive capacitance in the millimeter range. *IEEE Trans. Microwave Theory Tech.*, 1960, 8, 402–410.
- Nishikawa, T., Wakino, K., Tamura, H., Tanaka, H. and Ishikawa, Y., Precise measurement method for temperature coefficient of microwave dielectric resonator material. *IEEE MTT-S Int. Microwave Symp. Dig.*, 1987, 277–280.
- Kim, E. S., Chun, B. S., Kim, J. D. and Yoon, K. H., Low-temperature sintering and microwave dielectric properties of [Ca_{0.6}(Li_{0.5}Nd_{0.5})_{0.4}]_{0.45}Zn_{0.55}TiO₃ ceramics. *Mater. Sci. Eng. B*, 2003, 99, 243–246.
- Kingery, W. D., Densification during sintering in the presence of a liquid phase. I. Theory. J. Appl. Phys., 1959, 30, 301–306.